18 research outputs found

    The ρ(1S,2S)\rho(1S,2S), ψ(1S,2S)\psi(1S,2S), Υ(1S,2S)\Upsilon(1S,2S) and ψt(1S,2S)\psi_t(1S,2S) mesons in a double pole QCD Sum Rule

    Full text link
    We use the method of double pole QCD sum rule which is basically a fit with two exponentials of the correlation function, where we can extract the masses and decay constants of mesons as a function of the Borel mass. We apply this method to study the mesons: ρ(1S,2S)\rho(1S,2S), ψ(1S,2S)\psi(1S,2S), Υ(1S,2S)\Upsilon(1S,2S) and ψt(1S,2S)\psi_t(1S,2S). We also present predictions for the toponiuns masses ψt(1S,2S)\psi_t(1S,2S) of m(1S)=357 GeV and m(2S)=374 GeV.Comment: 14 pages, 11 figures in Braz J Phys (2016

    Electron acceleration by wave turbulence in a magnetized plasma

    Get PDF
    Astrophysical shocks are commonly revealed by the non-thermal emission of energetic electrons accelerated in situ 1-3 . Strong shocks are expected to accelerate particles to very high energies 4-6 ; however, they require a source of particles with velocities fast enough to permit multiple shock crossings. While the resulting diffusive shock acceleration 4 process can account for observations, the kinetic physics regulating the continuous injection of non-thermal particles is not well understood. Indeed, this injection problem is particularly acute for electrons, which rely on high-frequency plasma fluctuations to raise them above the thermal pool 7,8 . Here we show, using laboratory laser-produced shock experiments, that, in the presence of a strong magnetic field, significant electron pre-heating is achieved. We demonstrate that the key mechanism in producing these energetic electrons is through the generation of lower-hybrid turbulence via shock-reflected ions. Our experimental results are analogous to many astrophysical systems, including the interaction of a comet with the solar wind 9 , a setting where electron acceleration via lower-hybrid waves is possible
    corecore